FourWinds10.com - Delivering Truth Around the World
Custom Search

The Search for BP's Oil

Naomi Kline

Smaller Font Larger Font RSS 2.0

 

I race to the front of the WeatherBird II, a research vessel owned by the University of South Florida. There they are, doing their sleek silvery thing, weaving between translucent waves, disappearing under the boat, reappearing in perfect formation on the other side.

fter taking my fill of phone video (and very pleased not to have dropped the device into the Gulf of Mexico), I bump into Gregory Ellis, one of the junior scientists aboard.

"Did you see them?" I ask excitedly.

"You mean the charismatic megafauna?" he sneers. "I'll pass."

Ouch. Here I was thinking everyone loves dolphins, especially oceanographers. But it turns out that these particular marine scientists have issues with dolphins. And sea turtles. And pelicans. It's not that they don't like them (a few of the grad students took Flipper pictures of their own). It's just that the charismatic megafauna tend to upstage the decidedly less charismatic creatures under their microscopes. Like the bacteria and phytoplankton that live in the water column, for instance, or 500-year-old coral and the tube worms that burrow next to them, or impossibly small squid the size of a child's fingernail.

Normally these academics would be fine without our fascination. They weren't looking for glory when they decided to study organisms most people either can't see or wish they hadn't. But when the Deepwater Horizon exploded in April 2010, our collective bias toward cute big creatures started to matter a great deal. That's because the instant the spill-cam was switched off and it became clear that there would be no immediate mass die-offs among dolphins and pelicans, at least not on the scale of the Exxon Valdez spill deaths, most of us were pretty much on to the next telegenic disaster. (Chilean miners down a hole—and they've got video diaries? Tell us more!)

It didn't help that the government seemed determined to help move us along. Just three weeks after the wellhead was capped, the National Oceanic and Atmospheric Administration (NOAA) came out with its notorious "oil budget," which prompted White House energy czar Carol Browner to erroneously claim that "the vast majority of the oil is gone." The White House corrected the error (the fate of much of that oil is simply unknown), but the budget nonetheless inspired a flood of stories about how "doom-mongers" had exaggerated the spill's danger and, as the British Daily Mail tabloid indignantly put it, unfairly wronged "one of Britain's greatest companies."

More recently, in mid-December, Unified Area Command, the joint government-BP body formed to oversee the spill response, came out with a fat report that seemed expressly designed to close the book on the disaster. Mike Utsler, BP's Unified Area Commander, summed up its findings like this: "The beaches are safe, the water is safe, and the seafood is safe." Never mind that just four days earlier, more than 8,000 pounds of tar balls were collected on Florida's beaches—and that was an average day. Or that gulf residents and cleanup workers continue to report serious health problems that many scientists believe are linked to dispersant and crude oil exposure.

By the end of the year, investors were celebrating BP's stock rebound, and the company was feeling so emboldened that it revealed plans to challenge the official estimates of how much oil gushed out of its broken wellhead, claiming that the figures are as much as 50 percent too high. If BP succeeds, it could save the company as much as $10.5 billion in damages. The Obama administration, meanwhile, has just given the go-ahead for sixteen deepwater projects to resume in the gulf, well before the Oil Spill Commission's safety recommendations have a hope of being implemented.

For the scientists aboard the WeatherBird II, the recasting of the Deepwater Horizon spill as a good-news story about a disaster averted has not been easy to watch. Over the past seven months, they, along with a small group of similarly focused oceanographers from other universities, have logged dozens of weeks at sea in cramped research vessels, carefully measuring and monitoring the spill's impact on the delicate and little-understood ecology of the deep ocean. And these veteran scientists have seen things that they describe as unprecedented. Among their most striking findings are graveyards of recently deceased coral, oiled crab larvae, evidence of bizarre sickness in the phytoplankton and bacterial communities, and a mysterious brown liquid coating large swaths of the ocean floor, snuffing out life underneath. All are worrying signs that the toxins that invaded these waters are not finished wreaking havoc and could, in the months and years to come, lead to consequences as severe as commercial fishery collapses and even species extinction.

Perhaps not coincidentally, the most outspoken scientists doing this research come from Florida and Georgia, coastal states that have so far managed to avoid offshore drilling. Their universities are far less beholden to Big Oil than, say, Louisiana State University, which has received tens of millions from the oil giants. Again and again these scientists have used their independence to correct the official record about how much oil is actually out there, and what it is doing under the waves.

One of the most prominent scientists on the BP beat is David Hollander, a marine geochemist at the University of South Florida. Hollander's team was among the first to discover the underwater plumes in May and the first to trace the oil definitively to BP's well. In August, amid the claims that the oil had magically disappeared, Hollander and his colleagues came back from a cruise with samples proving that oil was still out there and still toxic to many marine organisms, just invisible to the human eye. This research, combined with his willingness to bluntly contradict federal agencies, has made Hollander something of a media darling. When he is not at sea, there is a good chance he is in front of a TV camera. In early December, he agreed to combine the two, allowing me and filmmaker Jacqueline Soohen to tag along on a research expedition in the northern Gulf of Mexico, east of the wellhead.

* * *

"Let's go fishing for oil," Hollander says with a broad smile as we get on the boat. A surfer and competitive bike racer in his youth, he is still something of a scrappy daredevil at 52. On the last cruise Hollander slipped and seriously injured his shoulder, and he has been ordered to take it easy this time. But within seconds of being on deck he is hauling equipment and lashing down gear. This is a particularly important task today because a distinctly un-Floridian cold front has descended and winds are whipping up ten-foot swells in the gulf. Getting to our first research station is supposed to take twenty-four hours, but it takes thirty instead. The entire time, the 115-foot WeatherBird II dips and heaves, and so do a few members of the eleven-person scientific team (and yeah, OK, me too).

Luckily, just as we arrive at our destination, about ninety nautical miles from the wellhead, the clouds part and the sea calms. A frenzy of floating science instantly erupts. First to be lowered overboard is the rosette, a cluster of four-foot-high metal canisters that collect water samples from different depths. When the rosette clangs back on deck, the crew swarms around its nozzles, filling up dozens of sample bottles. It looks like they are milking a metal cow. Carefully labeled bottles in tow, they are off to the makeshift laboratory to run the water through an assembly line of tests. Is it showing signs of hydrocarbons? Does it fluoresce under UV light? Does it carry the chemical signature of petroleum? Is it toxic to bacteria and phytoplankton?

A few hours later it's time for the multi-corer. When the instrument, twelve feet high and hoisted by a powerful winch, hits the ocean floor, eight clear cylinders shoot down into the sediment, filling up with sand and mud. The samples are examined under microscopes and UV lights, or spun with centrifugal force, then tested for signs of oil and dispersant. This routine will be repeated at nine more locations before the cruise is done. Each stop takes an average of ten hours, and the scientists are able to sneak in only a couple of hours of sleep between stations.

The WeatherBird II is returning to the precise coordinates where University of South Florida researchers found toxic water and sediment in May and August. At the second stop, Mary Abercrombie, who is testing the water under UV light in a device called a spectrofluorometer, sees something that looks like hydrocarbons from a sample collected seventy meters down—shallow enough to be worrying. But the other tests don't find much of anything. Hollander speculates that this may be because we are still in relatively shallow water and the recent storms have mixed everything up. "We'll probably see more when we go deeper."

VIEW SLIDE SHOW

http://www.thenation.com/article/157723/search-bps-oil